

GENIbus Protocol Specification

August 2005

Contents
1. Introduction Page 2
2. Technical Data Summary Page 3
3. Telegram Specification Page 4
 3.1 Telegram Format Page 4
 3.2 APDU Specification Page 4
 3.3 CRC Generation Page 7
 3.4 Connection Request Mechanism Page 9
 3.5 Telegram Examples Page 10
4. Scaling of Values Page 11
5. References and GENItools Page 15

HAM 11-08-05

1. Introduction

GENIbus, the Grundfos Electronics Network Intercommunications bus is a fieldbus developed by Grundfos to
meet the need for data transfer in all typical Grundfos motor/pump applications. In the field of Building
Management, control of Water Purifying Plants, Water Works and Industry applications etc. Grundfos devices
with GENIbus can be wired together in networks and integrated in automation systems. The major
employment’s are:

1) Set point control
2) Close loop control of slow systems (sampling rate < 10Hz)
3) Monitoring and data logging
4) Configuration
5) Faultfinding

GENIbus is based on the RS485 hardware standard and operates at a baud rate of 9600 bits/s. This relatively
slow communication speed makes it possible to communicate up to 1200 m without the use of termination
resistors. On the other hand, the slow speed makes GENIbus unsuitable for applications that requires fast
control loops e.g. servo applications.

The GENIbus protocol is based on master/slave communication and can handle multi-master networks (not
described in this document) if needed. However, a standard GENIbus device from Grundfos, like an E-pump
or a CU-control unit, acts as a slave. It will not interfere with the bus control and it will only send a reply when
it receives a request from a master device. This means that a GENIbus network will normally have only one
master which could be the central management system (SCADA), a local controller like a PLC, or a gateway to
another type of network. A total of 32 devices can be connected.

Like most other fieldbusses, GENIbus supports the mechanisms for single-casting (single-addressing),
multicasting (group addressing) and broadcasting (global addressing). A unique feature of GENIbus is the
Connection Request, which makes it possible to recognize all connected units on a network without having to
poll through all possible addresses.

A summary of GENIbus technical data is given in chapter 2. This gives an overview of the functionality, the
performance and the limitations.

Chapter 3 provides a detailed specification of the GENIbus telegram format. It describes how data is organized
and how operations on data take place. The mechanism in cyclic redundancy checking (CRC) is explained and
straight forward guidance in the CRC implementation is given. The chapter ends with some illustrative
telegram examples.

Chapter 4 explains how GENIbus values, which represent physical units are scaled and shows some examples.

Finally chapter 5 gives an overview of available GENIbus tools and functional profiles. A Dynamic Link
Library and an OPC server have been developed to ease the development of GENIbus applications under
Windows. A GENIbus functional profile document is associated with each GENIbus device. The functional
profile specifies all data that can be exchanged and how to use it. It is indispensable when making software to
operate GENIbus devices.

__
GENIbus Protocol Specification Page 2 of 16

HAM 11-08-05

2. Technical Data Summary

Physical Layer (hardware)
 Topology Bus
 Transmitter EIA RS485, half duplex
 Coding NRZ (non return to zero)
 Data format Start bit (=0), 8 data bits with least significant bit first, stop bit (=1)
 Baud rate 9600 bits/s
 Distance Daisy chain: 1200m

Multidrop: 500m
Twisted pair cable with shield is recommended

 No. of bus units Max. 32
Data Link Layer (timing, verification)
 Inter Byte Delay <=1.2ms
 Inter Telegram Delay >=3ms
 Reply Delay [3ms; 50ms]
 Cyclic redundancy checking 16 bit CCITT, polynomial is 0x1021, Start Delimiter excluded.

Initialised to 0xFFFF, CRC value bit inverted after calculation.
High order byte transmitted first.

 Medium access Master/Slave
 Physical address range Master address range: [0; 231]

Slave address range: [32; 231] *)
Connection request address: 254
Broadcast address: 255

Presentation Layer (data processing)
 Data orientation byte

*) The physical address range [32; 95] corresponds to the infra red remote controller R100 number range [1; 64]

Table 1: Short form technical specification for GENIbus.

Data Request Telegram Data Reply Telegram next Data Request Telegram

3ms < Reply Delay < 50msInter Byte Delay < 1.2ms 3ms < Inter Telegram Delay

Figure 1: Illustration of the timing requirements for a Communication Session. Each black rectangle shows a
 byte (10 bits character) on the RS485 line. These requirements imply the following:
 • The bytes in a telegram must be sent consecutively with an Inter Byte Delay less than 1.2 ms.
 • The Data Reply from a GENIbus unit will always be delayed at least 3 ms and maximum 50 ms.
 A Reply Timeout of approximately 60 ms in a master is suitable.
 • A master must leave the bus idle for at least 3 ms after the reception of a reply telegram before the

next request is transmitted. This triggers the idle detection circuit in all GENIbus units.
When using a Data Message telegram (which is not very common) the bus must be left idle by the
master for a time period corresponding to the maximum Reply Delay (= 50 ms) before the next
Communication Session can be initiated.

__
GENIbus Protocol Specification Page 3 of 16

HAM 11-08-05

3. Telegram Specification

3.1 Telegram Format

 Start Delimiter (SD)
 Length (LE) Head of

telegram Destination Address (DA)
 Source Address (SA)

 APDU Head
(2 byte)

APDU Data Field

 (0-63 byte)

 APDU Head
(2 byte)

APDU Data Field

 (0-63 byte)

 APDU Head

(2 byte)

APDU Data Field

 (0-63 byte)

Protocol
Data
Unit

(PDU)

 Request From Slave (RFS)
 CRC high order Check

Value CRC low order

SD=27H: Data Request
SD=26H: Data Message (no reply)
SD=24H: Data Reply

Length: Number of following bytes
 excluding the Check Value

Destination Address:
 Address of the receiving unit
 (destination unit)

Source Address:
 Address of the transmitting unit
 (source unit)

PDU: Protocol Data Unit, the data field
 of the telegram

APDU: Application Program Data Unit.
 This reflects the organization of
 application data in Classes and
 the data access in Operations.

RFS: Request From Slave.
 This byte is optional. It is used for
 transfer of bus control in multi-
 master networks

CRC: A 16 bit Cyclic Redundancy
 Check Value for validation of a
 correct data transfer.

Figure 2: Format of GENIbus telegram. Each horizontal field is a byte unless otherwise stated. A PDU can
consist of zero, one or many APDU’s

3.2 APDU Specification

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 0 0 0 Class

OS/ACK Length of APDU Data Field

APDU Data Field
(0-63 byte)

Figure 3: Format of Application Program Data Unit

Class: Specifies which Data Class the APDU belongs to. The APDU Data Field will be interpreted

accordingly. Table 2 shows a survey of the Data Classes together with the possible Operations that
can be performed on them.

OS/ACK: OS: Operation Specifier (for Data Request and Data Message)
 00: GET, to read the value of Data Items

__
GENIbus Protocol Specification Page 4 of 16

HAM 11-08-05

 10: SET, to write the value of Data Items
 11: INFO, to read the scaling information of Data Items, an Info Data structure (fig. 4)

will be returned.

 ACK: Acknowledge Code (for Data Reply)
 00: Everything is OK
 01: Data Class unknown, reply APDU data field will be empty
 10: Data Item ID unknown, reply APDU data field contains first unknown ID
 11: Operation illegal or Data Class write buffer is full, APDU data field will be empty

 Operation
Data Class GET SET INFO
1. -
2. Measured Data X X
3. Commands X X
4. Configuration Parameters X X X
5. Reference Values X X X
6. -
7. ASCII-strings X

Table 2: The Data Classes and possible Operations

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
1 0 VI BO * * SIF=2 1 0 VI BO * * SIF=3 INFO Head

SZ UNIT index SZ UNIT index
ZERO scale factor ZERO scale factor high order

RANGE scale factor

ZERO scale factor low order

INFO
Data
Field

Figure 4: Info Data structure, the reply to the INFO Operation. Requesting INFO from data items which are
not scaled will only return the INFO Head (1 byte). Scaled data items result in a reply with an
INFO Data Field as well. 8/16 bit data items use the left Data Field format (standard). The format
to the right is for 8/16/24/32 bit data items (extended precision). See details in chapter 4.

VI: Value Interpretation: 0: Only values from 0-254 are legal. 255 means “data not available”
 1: All values 0-255 are legal values

BO: Byte Order: 0: High order byte, this is default for all values that are only 8 bit
 1: Low order byte to a 16 bit, 24 bit or 32 bit value

SIF: Scale Information Format: 00: Scale information not available (no UNIT, ZERO or RANGE in reply)
 01: Bit wise interpreted value (no UNIT, ZERO or RANGE in reply)
 10: Scaled 8/16 bit value (UNIT, ZERO and RANGE in reply)
 11: Extended precision, scaled 8/16/24/32 bit value (UNIT and ZERO hi/lo
 in reply)

SZ: Sign of ZERO: 0: Positive
 1: Negative

UNIT index: A 7 bit index to the GENIbus Unit Table (Chapter 4)

ZERO/RANGE scale factors: For conversion between the physical representation and the computer
representation of a value. See details in chapter 4.

__
GENIbus Protocol Specification Page 5 of 16

HAM 11-08-05

 GET Operation SET Operation INFO Operation

Request APDU Reply APDU Request APDU Reply APDU
0 0 0 0 Class=2 0 0 0 0 Class=2 Illegal 0 0 0 0 Class=2 0 0 0 0 Class=2
0 0 Length 0 0 Length 1 1 Length 0 0 Length

ID Code Value ID Code
ID Code Value ID Code

1 or 4 byte
INFO Data

: : :

1 or 4 byte
INFO Data

 :

Class 2
Measured Data

 Request APDU Reply APDU Request APDU Reply APDU
Illegal 0 0 0 0 Class=3 0 0 0 0 Class=3 0 0 0 0 Class=3 0 0 0 0 Class=3

 1 0 Length 0 0 Length 1 1 Length 0 0 Length
 ID Code ID Code INFO Head
 ID Code ID Code INFO Head
 : : :

Class 3
Commands

Request APDU Reply APDU Request APDU Reply APDU Request APDU Reply APDU
0 0 0 0 Class=4 0 0 0 0 Class=4 0 0 0 0 Class=4 0 0 0 0 Class=4 0 0 0 0 Class=4 0 0 0 0 Class=4
0 0 Length 0 0 Length 1 0 Length 0 0 Length 1 1 Length 0 0 Length

ID Code Value ID Code ID Code
ID Code Value Value ID Code

1 or 4 byte
INFO Data

: : ID Code :
Value

1 or 4 byte
INFO Data

: :

Class 4
Configuration
Parameters

Request APDU Reply APDU Request APDU Reply APDU Request APDU Reply APDU
0 0 0 0 Class=5 0 0 0 0 Class=5 0 0 0 0 Class=5 0 0 0 0 Class=5 0 0 0 0 Class=5 0 0 0 0 Class=5
0 0 Length 0 0 Length 1 0 Length 0 0 Length 1 1 Length 0 0 Length

ID Code Value ID Code ID Code
ID Code Value Value ID Code

1 or 4 byte
INFO Data

: : ID Code :
Value

1 or 4 byte
INFO Data

: :

Class 5
Reference Values

Request APDU Reply APDU
0 0 0 0 Class=7 0 0 0 0 Class=7 Illegal Illegal
0 0 Length 0 0 Length

ID

ASCII string
(zero terminated)

Class 7
ASCII Strings

Figure 5: Survey of possible APDUs for the various Data Classes. Complete telegram examples can be found in chapter 3.5

__
GENIbus Protocol Specification Page 6 of 16

HAM 11-08-05

3.3 CRC Generation

The figure below shows a hardware equivalent of the CRC generation. It can be a great help in trying to
understand the mechanism. The dark shaded 16 bit register is called the CRC-Accumulator. When the whole
telegram has been shifted into the machine the Accumulator will hold the CCITT version of the CRC-value.
CCITT specifies an initialization of the CRC-Accumulator with all zeros. The Accumulator must be initialized
with all 1s and the bits inverted just before transmitting to make the CRC resistant to leading erroneous zeros
and to merged telegrams. A function that implements this behavior in software is written below:

++ +
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LS bit

Telegram bytes processed one by one

MS bit

Figure 6: A hardware equivalent CRC generator. GENIbus uses 0x1021 as generator polynomial.

 ushort crchware(ushort data, ushort accum)
 {
 uchar i;
 data <<=8;
 for (i=8; i>0; i--) /* Do for each bit: */
 {
 if ((data ^ accum) & 0x8000) /* IF a 1 in feedback path */
 accum = (accum <<1)^genpoly; /* feedback interaction */
 else /* ELSE */
 accum <<= 1; /* transparent shift */
 data <<=1; /* Make next bit ready */
 }
 return accum;
 }

Each byte in the telegram which is to take part in the cyclic redundancy check is passed to the function one by
one along with the value of the Accumulator. When the last byte of the telegram has been passed the return
value will be the CRC-value. Data has been declared as a 16 bit value due to its presence in a 16 bit expression.

By studying the CRC circuit we can see that when applying a new byte to the CRC circuit the feedback path
will not be influenced by the existing low order byte of the Accumulator. Only the high order Accumulator
byte interacts with the data bits. We refer to the result of this XOR'ing as the combining value. This leads to the
observation that the new Accumulator is equal to the CRC of the combining value XOR'ed with the unchanged
half of the Accumulator. This relationship can be expressed in C.

 comb_val = (accum >>8) ^ data;
 tmp = crchware(comb_val,0);
 accum = tmp ^ (accum <<8);

Since there are only 256 possible combining values, it would be a good idea to calculate their CRCs in advance
and store them in a table, crctab[256], thereby saving a great deal of run time computer power. The
following piece of code uses crchware to generate the lookup table.

 void main(void)
 {
 unsigned short i,j;
 printf("\nunsigned short crctab[256] = \n {");
 for (j=0; j<=31; j++)
 {
 printf("\n ");
 for (i=8*j; i<8*j+8; i++) printf("%6u, ", crchware(i,0));
 }
 printf("\n }");

GENIbus Protocol Specification Page 7 of 16

HAM 11-08-05

By redirecting the output to a file the table is ready to paste into the protocol source code. The CRC calculation
now takes this form.

 comb_val = (accum >>8) ^ data;
 tmp = crctab[comb_val];
 accum = tmp ^ (accum <<8);

Combining this into a more compact form leads to the final CRC function. The Accumulator has been removed
from the arguments and made a global variable, to avoid the overhead of passing it to the function for each
byte to process.

Final GENIbus CRC algorithm

ushort accum;
void crc_update(uchar data)
 {

accum = (accum <<8)^ crctab[(accum >>8) ^ data];
}

Transmitter: The CRC-Accumulator is initialized to 'all ones' and each byte, except the Start
Delimiter, is processed through the crc_update function before being sent to the Drivers. Finally the
CRC-Accumulator is inverted and its two bytes are appended to the telegram with high order byte first.
These two bytes are what we define as the CRC-Value.

Receiver: Performs a similar procedure. Initializes the CRC-Accumulator to 'all ones'. Then, each byte
received, except the Start Delimiter, is processed through the crc_update function. When the CRC-
Value bytes arrive they are inverted and then also processed through crc_update. If the CRC-
Accumulator hereafter is equal to zero the received telegram is considered as sound.

GENIbus Protocol Specification Page 8 of 16

HAM 11-08-05

3.4 Connection Request Mechanism

The GENIbus protocol offers an effective mechanism for a master device to recognize all units connected to
the bus. The master can use a Connection Request Telegram. This telegram is characterized by the usage of the
destination address DA=254 (0xFE). The Connection Reply which results is characterized by

 • only generated if the unit has not been requested (polled) by using its unit address within the last 20
seconds

• random reply delay [3ms; 43ms] to minimize the probability of several units replying simultaneously

When a network is powered on, and the master has no previous knowledge of which units are connected, it can
use Connection Requests (instead of polling through all possible addresses) to recognize the units. When all
units have been recognized (no more replies to connection requests), the master can use Connection Requests
occasionally as a simple means to detect if new units are connected (or units that have been disconnected or
switched off are being reconnected or switched on).

Connection Request Connection Reply

Start Delimiter 0x27 Start Delimiter 0x24
Length 0x0E Length 0x0E
Destination Address 0xFE Destination Address 0x01
Source Address 0x01 Source Address 0x20

Class 0: Protocol Data 0x00 Class 0: Protocol Data 0x00
OS=0 (GET), Length=2 0x02 Ack=0, Length=2 0x02
df_buf_len = ID 2 0x02 Value example of df_buf_len 0x46
unit_bus_mode = ID 3 0x03 Value example of unit_bus_mode 0x0E
Class 4: Configuration Parameters 0x04 Class 4: Configuration Parameters 0x04
OS=0 (GET), Length=2 0x02 Ack=0, Length=2 0x02
unit_addr = ID 46 0x2E Value example of unit_addr 0x20
group_addr = ID 47 0x2F Value example of group_addr 0xF7
Class 2: Measured Data 0x02 Class 2: Measured Data 0x02
OS=0 (GET), Length=2 0x02 Ack=0, Length=2 0x02
unit_family = ID 148 0x94 Value example of unit_family 0x03
unit_type = ID 149 0x95 Value example of unit_type 0x01

CRC high 0xA2 CRC high 0x00
CRC low 0xAA CRC low 0x04

Figure 7: Connection Request/Reply example. In this example the master has a Unit Address
 of 1 and the slave is a CU3 unit with unit address 32 (0x20), corresponding to No. 1
 given with the infra red remote controller R100.
 The Class 0 Data Items need not to be considered.

GENIbus Protocol Specification Page 9 of 16

HAM 11-08-05

3.5 Telegram Examples

Both examples assume communication with a Control Unit CU3 with unit address 0x20 (No. 1 given with
R100). Compare the examples with the general telegram format in figure 2 and the APDU survey in figure 5.

Data Request Data Reply

Start Delimiter 0x27 Start Delimiter 0x24
Length 0x07 Length 0x10
Destination Address 0x20 Destination Address 0x01
Source Address 0x01 Source Address 0x20

Class 2: Measured Data 0x02 Class 2: Measured Data 0x02
OS=3 (INFO), Length=3 0xC3 Ack=0, Length=12 0x0C
i_rst = ID 2 0x02 Value example of i_rst INFO head 0x82
t_mo = ID 16 0x10 Value example of i_rst UNIT Index 0x3E
p_hi = ID 26 0x1A Value example of i_rst ZERO 0x00
 Value example of i_rst RANGE 0x39
CRC high 0x90 Value example of t_mo INFO head 0x82
CRC low 0x1C Value example of t_mo UNIT Index 0x15
 Value example of t_mo ZERO 0x00
 Value example of t_mo RANGE 0x64
 Value example of p_hi INFO head 0x82
 Value example of p_hi UNIT Index 0x09
 Value example of p_hi ZERO 0x00
 Value example of p_hi RANGE 0xFA

 CRC high 0x91
 CRC low 0x0A

Figure 8: Request of scaling information of 3 data items by using the INFO operation. Notice that
 data items with scaling information return INFO head, UNIT index, ZERO and RANGE.
 The values in the reply are examples, your reply might be different.

Data Request Data Reply

Start Delimiter 0x27 Start Delimiter 0x24
Length 0x0F Length 0x0E
Destination Address 0x20 Destination Address 0x01
Source Address 0x01 Source Address 0x20

Class 2: Measured Data 0x02 Class 2: Measured Data 0x02
OS=0 (GET), Length=4 0x04 Ack=0, Length=4 0x04
i_rst = ID 2 0x02 Value example of i_rst 0x7A
t_mo = ID 16 0x10 Value example of t_mo 0x42
p_hi = ID 26 0x1A Value example of p_hi 0x39
p_lo = ID 27 0x1B Value example of p_lo 0x80
Class 4: Configuration Parameters 0x04 Class 4: Configuration Parameters 0x04
OS=0 (GET), Length=2 0x02 Ack=0, Length=2 0x02
t_mo_stop = ID 4 0x04 Value example of t_mo_stop 0xB5
i_rst_max_stop = ID 5 0x05 Value example of I_rst_max_stop 0xC8
Class 3: Commands 0x03 Class 3: Commands 0x03
OS=2 (SET), Length=1 0x81 Ack=0, Length=0 0x00
START = ID 6 0x06
 CRC high 0xF2
CRC high 0x80 CRC low 0xD7
CRC low 0x2A

Figure 9: The example shows how a reading of 4 data items from class 2 (p_hi and p_lo
 combines to a 16 bit value), and 2 data items from class 4 and writing of a command
 (class 3) can be done in one telegram. The values in the reply are examples, your reply
 might be different.

GENIbus Protocol Specification Page 10 of 16

HAM 11-08-05

4. Scaling of values

The purpose of scaling is to map the value of a variable x, representing some physical entity, into its computer
representation X. The GENIbus value representation is based on 8 bit quantities. This means, that scaling maps
an interval of real numbers with any chosen length and from any chosen decade linearly into an 8 bit integer
representation:

 [] [] ℜ∈∈→∈),(;254;0; baXbax

 Figure 10: Mapping real numbers into a byte value.

 254 X

 0 x
 a b

This mapping is shown graphically in the figure above. The value 255 is reserved for indication of "data not
available". What is needed now is a mathematical expression for the mapping and its inverse. The use of the
symbols in the figure and the straight line relationship give this equation to start with:

 (1) (xa
ab

x
abab

axX +−)
−

=
−

⋅+
−

⋅−=
2541254254)(

a is the "zero" for the interval to be mapped, and (b-a) is its "range". Both occur directly in the equation.
Contained in this "zero" and "range", however is the physical unit with some prefix factor to take the decade
into consideration. To isolate this, a multiplier called UNIT is introduced in the following way:

 b-a = "range" = RANGE ⋅ UNIT
 a = "zero" = ZERO ⋅ UNIT

Substituting this in (1) gives the final conversion formulas:

 (2a) ()xUNITZERO
UNITRANGE

X +⋅−
⋅

=
254

 (2b) UNITRANGEXZEROx ⋅⎟
⎠
⎞

⎜
⎝
⎛ +=

254

ZERO and RANGE can be represented in 8 bit, consequently they are suitable for GENIbus. UNIT is an index
to a standard table of defined physical units with a prefix factor. This table, from now on called The Unit
Table, although small, can cover a substantial amount of different scalings.
UNIT is chosen to be in 8 bit (not surprisingly). Bit 7 is reserved for one problem that was left over: the sign of
ZERO. Left are 7 bits giving 128 possible entries in The Unit Table. The job of converting a scaled GENIbus
data item value into its real number representation with physical units, now means to read (with INFO
Operation) ZERO, RANGE and UNIT for that data item, and then process the value through formula (2b).

The scaling formulas (2a-b) are only valid for 8 bit values, but it is only natural to extend them to count for 16
bit values as well. Understanding X16 as a 16 bit computer representation leads directly to the 16 bit version of
the conversion formulas:

 (3a) ()xUNITZERO
UNITRANGE

X +⋅−
⋅

⋅
=

256254
16

 (3b) UNITRANGEXRANGEXZEROUNITRANGEXZEROx lohi ⋅⎟
⎠
⎞

⎜
⎝
⎛

⋅
++=⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
+=

25625425425625416

Notice that “full range” for 16 bit values equals 254·256 = 0xFE00, and that Xhi=255 means “data not available”.

GENIbus Protocol Specification Page 11 of 16

HAM 11-08-05

Because GENIpro handles single byte Data Items, Xhi and Xlo must have one ID code each. Per definition, the
scaling information ZERO, RANGE and UNIT is connected with the high order byte, Xhi. The low order byte
Xlo has no scaling information because this comes implicit from (3a-b). Using the INFO operation on a low
order byte will however return an INFO head, where the BO bit is set to indicate that this is a low order byte
(See figure 4). The functional profile for the device in question specifies which data items are split in a
high/low pair.

The Unit Table
Index Physical

entity
Unit with

prefix
Index Physical

entity
Unit with

prefix
Index Physical

entity
Unit with

prefix
15 Electrical current 1 µA 92 Flow 10 m3/h 40 Energy 512 kWh
1 Electrical current 0.1 A 93 Flow 100 m3/h 46 Energy 1 MWh
42 Electrical current 0.2 A 73 Flow 0.5 l/h 47 Energy 10 MWh
62 Electrical current 0.5 A 52 Flow 1 l/s 48 Energy 100 MWh
2 Electrical current 5 A 63 Flow 0.1 l/s 90 Velocity 1 mm/s
3 Voltage 0.1 V 53 Flow 1 m3/s 34 Ang. velocity 2 rad/s
4 Voltage 1 V 54 Flow 1 gpm 39 Time 1024 h
5 Voltage 5 V 58 Flow 10 gpm 81 Time 100 h
6 Elec. resistance 1 Ω 82 Flow 0.1 l/min 72 Time 1024 min
43 Elec. resistance 10 kΩ 91 Head/Distance 0.0001 m 13 Time 2 h
89 Elec. resistance 100 kΩ 83 Head/Distance 0.01 m 35 Time 1 h
10 Elec. capacitance 1 µF 24 Head/Distance 0.1 m 36 Time 2 min
7 Power (active) 1 W 25 Head/Distance 1 m 80 Time 1 min
8 Power (active) 10 W 26 Head/Distance 10 m 14 Time 30 s
9 Power (active) 100 W 56 Head/Distance 1 ft 78 Time 10 s
44 Power (active) 1 kW 59 Head/Distance 10 ft 37 Time 1 s
45 Power (active) 10 kW 51 Pressure 0.001 bar 79 Time 0.1 s
11 Frequency 0.5 Hz 27 Pressure 0.01 bar 49 Ang. degrees 1 o

16 Frequency 1 Hz 28 Pressure 0.1 bar 77 Gain 0.01
38 Frequency 2 Hz 29 Pressure 1 bar 50 Gain 1
17 Frequency 2.5 Hz 61 Pressure 1 kPa 71 Volume 1 nl
18 Rot. velocity 12 rpm 55 Pressure 1 psi 70 Volume 0.1 ml
19 Rot. velocity 100 rpm 60 Pressure 10 psi 88 Volume 1 ml
20 Temperature 0.1 oC 12 Percentage 0.1 % 64 Volume 0.1 m3
21 Temperature 1 oC 30 Percentage 1 % 86 Volume 1 m3
57 Temperature 1 oF 76 Percentage 10 % 67 Volume 256 m3
84 Temperature 0.01 K 87 Energy 1 Ws 65 Volume 1000 m3
69 Flow 0.1 ml/h 94 Energy 1 Wh 66 Energy pr vol. 10 kWh/m3
95 Flow 0.01 m3/h 31 Energy 1 kWh 74 Energy pr vol. 1 Wh/m3
22 Flow 0.1 m3/h 85 Energy 2 kWh 68 Area 1 m2
23 Flow 1 m3/h 32 Energy 10 kWh 75 Torque 1 Nm
41 Flow 5 m3/h 33 Energy 100 kWh

Table 3: The Unit Table

Scaling example for 8 bit data item

Assume that a GET request for the data item t_m (Motor temperature, Class 2, ID 29) in a UPE pump (or E-
pump) returns the value 163 and an INFO request for the same data item returns UNIT=21, RANGE=90,
ZERO=10, then

CCUNITRANGEmtZEROT oo
m 681

254
9016310

254
_ =⋅⎟

⎠
⎞

⎜
⎝
⎛ ⋅+=⋅⎟

⎠
⎞

⎜
⎝
⎛ +=

Scaling example for 16 bit data item

Assume that a GET request for the data items p_hi and p_lo which constitute a 16 bit high/low data item
pair (Power consumption, Class 2, ID 26/27) in a CU3 control unit returns the values 16/214 and an INFO
request for p_hi returns UNIT=44, RANGE=120, ZERO=0, then

kWkWUNITRANGElopRANGEhipZEROP 95.71
256254

120214
254
120160

256254
_

254
_ =⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
⋅+⋅+=⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
++=

GENIbus Protocol Specification Page 12 of 16

HAM 11-08-05

It can generally be assumed that no GENIbus device changes the scaling of the data items dynamically. This
means that once ZERO, RANGE and UNIT are known for all the required data items (by using INFO requests
when starting) it is now only necessary to request the data item values and process the reply through the scaling
formula with the value of the scaling parameters inserted.

GENIbus Protocol Specification Page 13 of 16

HAM 11-08-05

Extended precision

To be able to deal with data that spans a range of several decades and which at the same time must preserve the
same resolution in the high decade as in the low decade, the GENIbus protocol supports a data format with
extended precision using 16 bit, 24 bit or 32 bit (see also figure 4 in chapter 3.2). This format differs from the
standard scaling format in two ways: it does not include a RANGE specifier, and the ZERO specifier is in 16
bit. The conversion formulas for 8 bit, 16 bit, 24 bit and 32 bit respectively are shown below:

 (4.a) 168 ZERO
UNIT

xX −=

 (4.b) UNITXZEROx ⋅+=)(816

 (5.a) 1616 ZERO
UNIT

xX −=

 (5.b) UNITXZEROx ⋅+=)(1616

 (6.a) 1624 256 ZERO
UNIT

xX ⋅−=

 (6.b) UNITXZEROx ⋅+⋅=)256(2416

 (7.a) 16
2

32 256 ZERO
UNIT

xX ⋅−=

 (7.b) UNITXZEROx ⋅+⋅=)256(3216
2

Note that X16 consists of 2 data items: lohi XXX +⋅= 25616

that X24 consists of 3 data items: 21
2

24 256256 lolohi XXXX +⋅+⋅=

that X32 consists of 4 data items: 32
2

1
3

32 256256256 lololohi XXXXX +⋅+⋅+⋅=
and that lohi ZEROZEROZERO +⋅= 25616

It is also worth observing that when ZERO is 0 (which is normally the case) the formulas 4, 5, 6 and 7 become
identical.

From the INFO head it can be seen if a data item is scaled according to the extended precision specification or
not. However it will also be mentioned explicitly in the function profile of the product in question.

Extended precision scaling example for 8 bit data item

Extended precision with 8 bit is typically used for data items where the increments (1 bit) should have a nice
value (e.g. 1W instead of 1.18W) or, if there are multi-byte data items using extended precision, to keep all
scaling according to the extended format. Assume that a GET request for the data item t_mo (Class 2, ID 94)
in an MP 204 motor protection unit, returns the value 87, and an INFO request for t_mo returns UNIT=21
(positive ZERO and UNIT index = 21 corresponding to 1 oC), ZEROhi=0, ZEROlo=0, then

() UNITmotZEROTmotor ⋅+= 816 _

Substituting:

CUNIT
ZEROZEROZERO

motmot

lohi

°=
+⋅=

=

1
256
__

16

8

results in:
() CCTmotor °=°⋅++⋅= 871)8700256(

Extended precision scaling example for 16 bit data item

Extended precision with 16 bit is typically used for data items which need a higher precision than 8 bit and
where the increments (1 bit) should have a nice value (e.g. 1W instead of 1.18W). Assume that a GET request
for the data items water_level_hi and water_level_lo which constitute a 16 bit data item pair
(Class 2, ID 201/202) in an SEE sewage pump, returns the values 18, 12, and an INFO request for

GENIbus Protocol Specification Page 14 of 16

HAM 11-08-05

water_level_hi returns UNIT=179 (negative ZERO and UNIT index = 51), ZEROhi=3, ZEROlo=245,
then

() UNITlevelwaterZEROLwater ⋅+= 1616 _

Substituting:

mbarUNIT
ZEROZEROZERO

lolevelwaterhilevelwaterlevelwater

lohi

151
256

__256___

16

16

=
+⋅=

+⋅=

results in:
() mbarmbarmbarmbarLwater 3607462010131)12256182453256(=+−=⋅+⋅++⋅−=

Extended precision scaling example for 24 bit data item

Extended precision with 24 bit is typically used for counters which count events or time. Assume that a GET
request for the data items power_on_time_hi, power_on_time_lo1 and power_on_time_lo2
which constitute a 24 bit data item trio (Class 2, ID 192/193/194) in a UPE pump, returns the values 7, 108, 32,
and an INFO request for power_on_time_hi returns UNIT=36, ZEROhi=0, ZEROlo=0, then

() UNITtimeonpowerZEROt onpower ⋅+⋅= 2416
2

_ __256

Substituting:

min236
256

2___2561___256_____

16

2
24

=
+⋅=

+⋅+⋅=

UNIT
ZEROZEROZERO

lotimeonpowerlotimeonpowerhitimeonpowertimeonpower

lohi

results in:
() min2414675min972864min2)32256108256700256256(22

_ hdT onpower ==⋅+⋅+⋅++⋅⋅=

Extended precision scaling example for 32 bit data item

Extended precision with 32 bit is typically used for physical values (measured or calculated). Assume that a
GET request for the data items dosing_flow_hi, dosing_flow_lo1 dosing_flow_lo2 and
dosing_flow_lo3 which constitute a 32 bit data item quartet (Actual dosing flow, Class 2, ID
39/40/41/42) in a DME dosing pump, returns the values 23, 216, 42, 214 and an INFO request for
dosing_flow_hi returns UNIT=69, ZEROhi=0, ZEROlo=0, then

() UNITflowgdoZEROQ gdo ⋅+⋅= 3216
2

sin _sin256

Substituting:

hmlUNIT
ZEROZEROZERO

loflowgdoloflowgdoloflowgdohiflowgdoflowgdo

lohi

/1.069
256

3__sin2562__sin2561__sin256__sin_sin

16

23
32

=
+⋅=

+⋅+⋅+⋅=

results in:
() hmlhmlQ gdo /100043.40/1.0)214256422562162562300256256(6232

sin ⋅=⋅+⋅+⋅+⋅++⋅⋅=

GENIbus Protocol Specification Page 15 of 16

HAM 11-08-05

5. References and GENItools

Tools for developing GENIbus applications
DLL A Dynamic Link Library (DLL file) for accessing GENIbus units from Windows

applications. A user manual is included
OPC Grundfos GENI OPC server for accessing GENIbus units from Windows applications.

A user manual is included (released Q3 2002)

Functional Profiles for GENIbus devices
cu3.pdf Operating the CU3 control unit via GENIbus or G100
cu300.pdf Operating the CU300 control unit via GENIbus or G100
dme.pdf Operating the DME dosing pump via GENIbus or G100
mge.pdf Operating the 3 phase MGE motor via GENIbus or G100
mp204.pdf Operating the MP 204 motor protection unit via GENIbus or G100
multi-e.pdf Operating the Hydro Multi-E pressure boosting system via GENIbus or G100
se.pdf Operating the SEE/SES Sewage pump via GENIbus or G100
upe.pdf Operating the UPE pump via GENIbus or G100
ups.pdf Operating the UPS pump via GENIbus or G100

GENIbus Protocol Specification Page 16 of 16

	Inter Telegram Delay
	Medium access

