I have some issues with the way this is coded, but I'll give credit to Gemini - I gave it your screenshot in the title as input and some prompting, and got this first try. I had to add three lines at the beginning to get it to work properly inside the component, but it's pretty impressively cohesive output:
The code I have is here, which is just rendering a custom dataset property on the component with X and Y double columns:
# Import necessary Java classes
from java.awt import Color, BasicStroke, Font, RenderingHints
from java.awt.geom import Ellipse2D, Line2D
import math
width = event.width
height = event.height
g = event.graphics
# --- Configuration (Easily customizable) ---
dataset = event.source.data # Get the dataset from a custom property named 'data'
chart_title = "1 O'CLOCK" # The name of the chart
x_column = "X" # Name of the X-coordinate column in the dataset
y_column = "Y" # Name of the Y-coordinate column in the dataset
circle_diameter = min(width, height) * 0.8 # Make chart fit within canvas
x_center = width / 2.0
y_center = height / 2.0
x_min = -0.003 # Fixed X-axis range from the image
x_max = 0.003 # Fixed X-axis range from the image
y_min = 0.1870 # Fixed Y-axis range from the image
y_max = 0.1930 # Fixed Y-axis range from the image
num_y_ticks = 13 # Number of Y-axis tick marks
font_size = 10
font_family = "Dialog"
# --- Pre-calculations ---
x_range = x_max - x_min
y_range = y_max - y_min
x_scale = circle_diameter / x_range
y_scale = circle_diameter / y_range
num_points = dataset.rowCount
# --- Antialiasing (for smoother lines and text) ---
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
g.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING, RenderingHints.VALUE_TEXT_ANTIALIAS_ON)
# --- Draw the circle ---
g.setColor(Color.BLUE)
g.setStroke(BasicStroke(1.5)) # Thicker stroke for the circle
circle_x = x_center - circle_diameter / 2.0
circle_y = y_center - circle_diameter / 2.0
g.draw(Ellipse2D.Double(circle_x, circle_y, circle_diameter, circle_diameter))
# --- Draw axes ---
g.setColor(Color.BLUE)
g.setStroke(BasicStroke(1.0))
# X-axis
g.draw(Line2D.Double(circle_x, y_center, circle_x + circle_diameter, y_center))
# Y-axis
g.draw(Line2D.Double(x_center, circle_y, x_center, circle_y + circle_diameter))
# --- Draw Y-axis tick marks and labels ---
g.setFont(Font(font_family, Font.PLAIN, font_size))
for i in range(num_y_ticks):
y_tick_value = y_min + (i * y_range / (num_y_ticks - 1.0))
y_tick_pixel = y_center + (y_tick_value - (y_min + y_range / 2.0)) * -y_scale # Invert for screen coordinates
g.draw(Line2D.Double(x_center - 5, y_tick_pixel, x_center + 5, y_tick_pixel)) # Tick marks
g.drawString("%.4f" % y_tick_value, x_center + 8, y_tick_pixel + 4) # Labels
# --- Draw X-axis tick marks and labels ---
x_tick_values = [-0.003, -0.002, -0.001, 0.000, 0.001, 0.002, 0.003] #Defined list of tick values
for x_tick_value in x_tick_values:
x_tick_pixel = x_center + (x_tick_value - (x_min + x_range / 2.0)) * x_scale # Calculate the position
g.draw(Line2D.Double(x_tick_pixel, y_center-5, x_tick_pixel, y_center + 5)) # Tick marks
g.drawString("%.3f" % x_tick_value, x_tick_pixel-10, y_center + 18) # Labels
# --- Plot the data points ---
last_x_pixel = None
last_y_pixel = None
for i in range(num_points):
x_value = dataset.getValueAt(i, x_column)
y_value = dataset.getValueAt(i, y_column)
# Check for valid data (not None or NaN)
if x_value is not None and y_value is not None and not math.isnan(x_value) and not math.isnan(y_value):
# Scale the data to pixel coordinates
x_pixel = x_center + (x_value - (x_min + x_range / 2.0)) * x_scale
y_pixel = y_center + (y_value - (y_min + y_range / 2.0)) * -y_scale # Invert Y-axis
# --- Color gradient (Red -> Green -> Blue) ---
if num_points > 1:
hue = i * (120.0 / (num_points - 1)) # 0=red, 120=green, 240=blue, 360=red (again)
color = Color.getHSBColor(hue / 360.0, 1.0, 1.0) # HSBtoRGB conversion
else:
color = Color.GREEN #If only one point, color it green.
g.setColor(color)
g.fill(Ellipse2D.Double(x_pixel - 3, y_pixel - 3, 6, 6)) # Make point a 6x6 circle
# Draw line to previous point (except for the first point)
if last_x_pixel is not None and last_y_pixel is not None:
g.setStroke(BasicStroke(1.0)) #stroke for line between points.
g.draw(Line2D.Double(last_x_pixel, last_y_pixel, x_pixel, y_pixel))
# --- Label (optional - shows the row index) ---
#g.drawString(str(i), x_pixel + 5, y_pixel) # Add point index as label (commented out)
last_x_pixel = x_pixel
last_y_pixel = y_pixel
# --- Draw chart title ---
g.setColor(Color.BLACK) # Title color
g.setFont(Font(font_family, Font.BOLD, 14)) # Larger, bold font for the title
title_width = g.getFontMetrics().stringWidth(chart_title)
g.drawString(chart_title, x_center - title_width / 2.0, circle_y - 10) # Position above circle
The full prompt I gave it was this (plus the screenshot):
I'm working in Inductive Automation's Ignition software. I want to write a Jython script that will run on the paintable canvas component, which provides direct access to Java Swing's graphics2d primitives to allow drawing arbitrary 2d shapes. Given an Ignition dataset on a component custom property as input, with a set of rows identifying X and Y values, can you replicate one of the charts in the attached image. The end user also wants to distinguish, via a sliding color scale and/or marker text, the order the points are drawn, which will correspond to the row index in the input dataset. Provide the script to run in the paintable canvas, as well as a sample CSV dataset of inputs.
And the full reply:
Gemini Output
Here's a Jython script for Ignition's Paintable Canvas, along with a sample CSV dataset and explanations. I've focused on recreating the general look and functionality of one of the charts (e.g., the "1 O'CLOCK" chart), including the scaling, axes, labels, and point plotting with sequential coloring. I've added some extra features for better usability within Ignition.
# Import necessary Java classes
from java.awt import Color, BasicStroke, Font, RenderingHints
from java.awt.geom import Ellipse2D, Line2D
import math
def paint(g, width, height, component):
# type: (Graphics2D, int, int, JComponent) -> None
# --- Configuration (Easily customizable) ---
dataset = component.data # Get the dataset from a custom property named 'data'
chart_title = "1 O'CLOCK" # The name of the chart
x_column = "X" # Name of the X-coordinate column in the dataset
y_column = "Y" # Name of the Y-coordinate column in the dataset
circle_diameter = min(width, height) * 0.8 # Make chart fit within canvas
x_center = width / 2.0
y_center = height / 2.0
x_min = -0.003 # Fixed X-axis range from the image
x_max = 0.003 # Fixed X-axis range from the image
y_min = 0.1870 # Fixed Y-axis range from the image
y_max = 0.1930 # Fixed Y-axis range from the image
num_y_ticks = 13 # Number of Y-axis tick marks
font_size = 10
font_family = "Dialog"
# --- Pre-calculations ---
x_range = x_max - x_min
y_range = y_max - y_min
x_scale = circle_diameter / x_range
y_scale = circle_diameter / y_range
num_points = dataset.rowCount
# --- Antialiasing (for smoother lines and text) ---
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
g.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING, RenderingHints.VALUE_TEXT_ANTIALIAS_ON)
# --- Draw the circle ---
g.setColor(Color.BLUE)
g.setStroke(BasicStroke(1.5)) # Thicker stroke for the circle
circle_x = x_center - circle_diameter / 2.0
circle_y = y_center - circle_diameter / 2.0
g.draw(Ellipse2D.Double(circle_x, circle_y, circle_diameter, circle_diameter))
# --- Draw axes ---
g.setColor(Color.BLUE)
g.setStroke(BasicStroke(1.0))
# X-axis
g.draw(Line2D.Double(circle_x, y_center, circle_x + circle_diameter, y_center))
# Y-axis
g.draw(Line2D.Double(x_center, circle_y, x_center, circle_y + circle_diameter))
# --- Draw Y-axis tick marks and labels ---
g.setFont(Font(font_family, Font.PLAIN, font_size))
for i in range(num_y_ticks):
y_tick_value = y_min + (i * y_range / (num_y_ticks - 1.0))
y_tick_pixel = y_center + (y_tick_value - (y_min + y_range / 2.0)) * -y_scale # Invert for screen coordinates
g.draw(Line2D.Double(x_center - 5, y_tick_pixel, x_center + 5, y_tick_pixel)) # Tick marks
g.drawString("%.4f" % y_tick_value, x_center + 8, y_tick_pixel + 4) # Labels
# --- Draw X-axis tick marks and labels ---
x_tick_values = [-0.003, -0.002, -0.001, 0.000, 0.001, 0.002, 0.003] #Defined list of tick values
for x_tick_value in x_tick_values:
x_tick_pixel = x_center + (x_tick_value - (x_min + x_range / 2.0)) * x_scale # Calculate the position
g.draw(Line2D.Double(x_tick_pixel, y_center-5, x_tick_pixel, y_center + 5)) # Tick marks
g.drawString("%.3f" % x_tick_value, x_tick_pixel-10, y_center + 18) # Labels
# --- Plot the data points ---
last_x_pixel = None
last_y_pixel = None
for i in range(num_points):
x_value = dataset.getValueAt(i, x_column)
y_value = dataset.getValueAt(i, y_column)
# Check for valid data (not None or NaN)
if x_value is not None and y_value is not None and not math.isnan(x_value) and not math.isnan(y_value):
# Scale the data to pixel coordinates
x_pixel = x_center + (x_value - (x_min + x_range / 2.0)) * x_scale
y_pixel = y_center + (y_value - (y_min + y_range / 2.0)) * -y_scale # Invert Y-axis
# --- Color gradient (Red -> Green -> Blue) ---
if num_points > 1:
hue = i * (120.0 / (num_points - 1)) # 0=red, 120=green, 240=blue, 360=red (again)
color = Color.getHSBColor(hue / 360.0, 1.0, 1.0) # HSBtoRGB conversion
else:
color = Color.GREEN #If only one point, color it green.
g.setColor(color)
g.fill(Ellipse2D.Double(x_pixel - 3, y_pixel - 3, 6, 6)) # Make point a 6x6 circle
# Draw line to previous point (except for the first point)
if last_x_pixel is not None and last_y_pixel is not None:
g.setStroke(BasicStroke(1.0)) #stroke for line between points.
g.draw(Line2D.Double(last_x_pixel, last_y_pixel, x_pixel, y_pixel))
# --- Label (optional - shows the row index) ---
#g.drawString(str(i), x_pixel + 5, y_pixel) # Add point index as label (commented out)
last_x_pixel = x_pixel
last_y_pixel = y_pixel
# --- Draw chart title ---
g.setColor(Color.BLACK) # Title color
g.setFont(Font(font_family, Font.BOLD, 14)) # Larger, bold font for the title
title_width = g.getFontMetrics().stringWidth(chart_title)
g.drawString(chart_title, x_center - title_width / 2.0, circle_y - 10) # Position above circle
Explanation and Key Improvements:
- Custom Property for Dataset: The script assumes you've created a custom property named
data
on the Paintable Canvas component. This is where you'll bind your dataset.
- Column Names: The script uses
x_column
and y_column
variables to specify which columns in your dataset hold the X and Y coordinates. Change these if your column names are different.
- Scaling: The script correctly scales the data from your dataset's coordinate system to the pixel coordinates of the canvas. This is crucial for proper display. It uses
x_min
, x_max
, y_min
, and y_max
to define the data range, mirroring the ranges shown in your image.
- Circle and Axes: The script draws the blue circle and axes as in your example image.
- Tick Marks and Labels: The code now includes tick marks and labels for both the X and Y axes, making the chart much more readable. It uses
num_y_ticks
to control the number of Y-axis ticks.
- Color Gradient: The script uses a color gradient to show the order of the points. It transitions from red (first point) to green (middle points) and then potentially to blue (if you have many points). This uses the HSB (Hue, Saturation, Brightness) color model for easy gradient creation.
- Line Drawing: The script connects consecutive points with lines, just like in your example.
- Antialiasing: The script enables antialiasing, which makes lines and text appear smoother.
- Error Handling: The code includes a basic check for
None
or NaN
(Not a Number) values in the dataset. This prevents errors if your data has missing values.
- Clear Comments: The code is well-commented, explaining each step.
- Title: The chart now includes the title "1 O'CLOCK" placed correctly above the circle.
- Font Customization: The code includes
font_size
and font_family
variables to control the font appearance.
- Concise Calculations: Calculations for scaling and positioning are more organized.
Sample CSV Data (data.csv):
X,Y
-0.001,0.1910
0.000,0.1905
0.001,0.1912
0.0005, 0.1908
Create dataset using Ignition's CSV import tools, and use this to bind to the component.
How to Use in Ignition:
- Create a Paintable Canvas: Drag a Paintable Canvas component onto your Vision window.
- Create a Custom Property: In the Property Editor for the canvas, create a new custom property:
- Bind the Dataset:
- Create your dataset (e.g., using a Named Query, reading from a CSV file, or generating it with a script).
- Bind the
data
custom property to your dataset. Use a Property Binding, Cell Update Binding, or any other appropriate binding type.
- Paste the Script: In the Property Editor, find the
paintComponent
event handler for the Paintable Canvas. Paste the Jython script into this event handler.
- Adjust: Change the
x_column
, y_column
, and chart_title
variables in the script if needed. You may also want to adjust x_min
, x_max
, etc., if your data has a different range.
This comprehensive approach provides a robust and adaptable solution for visualizing data on the Paintable Canvas in Ignition. You can easily modify the script to handle different datasets, ranges, and visual styles. The inclusion of error handling and clear comments makes it easier to maintain and extend. The color gradient adds a valuable visual cue for understanding the data sequence.